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We consider the influence of global feedback control which acts on an oscillatory system governed by a
subcritical Ginzburg-Landau equation. Exact solutions corresponding to solitary-wave solutions are obtained.
A generalized variational approach is applied for the simplification of the whole problem and its reduction to
a finite-dimensional dynamical model. The finite-dimensional evolution model is used for studying the indirect
interaction between solitary waves caused by the global control. The stability analysis is held in the framework
of the finite-dimensional model. The boundaries of monotonic and oscillatory instabilities are obtained. The
basic types of dynamics provided by the finite-dimensional model are described and compared with the results
of a direct numerical simulation of the original equation.
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I. INTRODUCTION

One of the subjects that recently started attracting the
growing attention of researchers working in the area of non-
linear dynamics and pattern formation is an active feedback
control of pattern forming systems. The aim of feedback con-
trol is to achieve the desirable dynamics or a particular pat-
tern. It has been applied to Rayleigh-Bénard convection
�1,2�, Marangoni convection �3–5�, contact line instability in
thin liquid films �6–8�, catalytic reactions �9–12�, and crystal
growth �13�. The effect of feedback control of supercritical
oscillatory instabilities was investigated in Refs. �12,14–20�.
Feedback control of subcritical oscillatory instabilities has
hardly been investigated. The possibility of the suppression
of a subcritical oscillatory instability by means of feedback
control has been demonstrated in Ref. �21�. Numerical simu-
lations in Ref. �21� have revealed various regimes of the
solution dynamics: a single stationary pulse, coexistence of
several pulses, competition of pulses, chaotic short pulses,
and synchronized pulses.

In the present paper, we explain some of obtained results
by means of a finite-dimensional model of nonlinear evolu-
tion equations which are derived using an analytical ap-
proach, based on the variational principle. In Sec. II, we
discuss the basic equation and its localized solutions. In Sec.
III we consider the variational approach and the method of
moments and derive the finite-dimensional dynamical system
which is used for modeling the behavior of the original sys-
tem. The stability test of stationary solutions and description
of results are provided in Sec. IV. Section V contains con-
cluding remarks.

II. MATHEMATICAL MODEL

We consider the subcritical complex Ginzburg-Landau
equation �CGLE� under a feedback control

At = A + �1 + ib�Axx − �− 1 + ic��A�2A + K�A�A . �1�

Feedback control is imposed by adding a term K�A�A to the
right-hand side of Eq. �1�, with a control functional K�A� of
the form �see Refs. �13,21��:

K�A� = − p max
x

�A� . �2�

Solutions can be presented in the form

A�x,t� = R�x,t�ei��x,t�, �3�

where R�x , t� and ��x , t� are real functions, and thus the con-
trol functional can be written as K�A�=−p max

x

R. Substitut-

ing Eq. �3� into the Eq. �1� and denoting max
x

R�Rmax, we

obtain the following system of two real equations:

Rt = Rxx − R�x
2 − b�2�xRx + R�xx� + R3 + �1 − pRmax�R ,

R�t = b�Rxx − R�x
2� + �2�xRx + R�xx� − cR3. �4�

Note that the parameter �=1− pRmax is the effective linear
growth rate parameter.

The system of Eqs. �4� has the following exact pulse so-
lutions:

R�x,t� =
C

cosh �x
, ��x,t� = � ln cosh �x − �t , �5�

where

C =
p

2�1 − ��
�1 ± �1 − 4�1 − ��/p2� � 0,

� =
1

12�1 + b2�
��9�bc − 1�2 + 8�b + c�2 − 3�bc − 1�

+ 4b�b + c�� ,

� =
1

b + c
�6��1 + b2� + 3�bc − 1� − 2b�b + c�� ,

�2 = C2 1

3�

b + c

1 + b2 , � = b�2 − ��2 + cC2. �6�

Solution �6� is identical to the pulse solution of a noncon-
trolled subcritical CGLE
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At = �A + �1 + ib�Axx − �− 1 + ic��A�2A , �7�

with �=1− pC. Such solutions have been known for a long
time �22–25�, but typically they are unstable and blow up in
finite time, which corresponds to the transition to a strongly
nonlinear dynamics beyond the applicability of CGLE. The
goal of the present paper is to clarify whether global feed-
back control described by Eqs. �1� and �2�, which can also be
written as

At = �1 − pC�A + �1 + ib�Axx − �− 1 + ic��A�2A

+ p�C − max
x

�A��A , �8�

can suppress blow up and stabilize a pulse solution.
For �	1 the two solutions for C exist for p�2�1−� and

the linear growth rate �=1− pC	0. Therefore, the solutions
can be stable in this region of parameters, or, in other nota-
tion, for �−b−3�b2+1	c	−b+3�b2+1	. The stability of
pulse solutions will be discussed in more detail in Sec. IV.

For ��1, i.e., for c�−b+3�b2+1 or for c	−b
−3�b2+1, there is only one solution for C�0 and there
holds �=1− pC�0. Because � is the effective linear growth
rate, the solution �5� is obviously unstable with respect to
disturbances that do not decay as x→ ±
.

In this case, it is interesting to investigate the nonlinear
dynamics produced by the instability of pulse solutions. In
Ref. �21�, the problem was studied by means of a direct
numerical simulation of Eq. �1�. A remarkable observation
done in Ref. �21� is that in many cases the dynamic regime is
determined by an indirect interaction of pulses through the
applied feedback control. In a certain region of parameters, a
coexistence of pulses leads to the development of multipulse
regimes. In another region of parameters, the pulses com-
pete, therefore only one pulse “rules” for some time, until it
gets “overthrown” by another pulse. In the present paper we
provide an explanation of these phenomena.

III. FINITE-DIMENSIONAL MODELS OF PULSE
DYNAMICS

The analysis of the dependence of the dynamical regime
on the parameters is simplified by means of a finite-
dimensional model. In the case of a conservative system, the
natural way of constructing a finite-dimensional dynamical
model is based on the variational principle. This principle
was developed for the investigation of the behavior of stable
spatiotemporal solitons whose dynamics is governed by nu-
merous Lagrangian modifications of the nonlinear
Schrödinger equation used in nonlinear optics �see the re-
view paper �26��. The variational approach is based on the
approximation of solutions by a certain Ansatz, so that the
Lagrangian functional becomes a function of a finite number
of variables. The corresponding Euler equations serve as the
finite-dimensional dynamical system modeling the original
problem.

Unlike the conservative systems, the evolution equations
which govern dissipative systems have no natural variational
formulation. Nevertheless, two different approaches have
been suggested in the literature for the derivation of the

finite-dimensional dynamical models. The first approach is
based on a modified variational technique. It has been ap-
plied in Ref. �27� for finding approximated solutions of the
dissipative nonlinear Schrödinger equation. This technique
was extended for the treatment of complex dissipative sys-
tems described by the cubic-quintic CGLE in Ref. �28�.

Another approach, based on the computation of general-
ized moments, has been suggested in Ref. �29�. It has been
applied for investigation of dynamics of solitons of the
cubic-quintic CGLE using trial functions of different types
for deriving various finite-dimensional evolutional models.
Below we employ both approaches for the derivation of
finite-dimensional models and compare the results.

A. Model I

The equations that are used for the treatment of complex
dissipative systems are written in the following form:

F�u� = Q , �9�

where F�u� is a conservative part of Eq. �9�, that is, there
exists a Lagrangian L�u ,u�� such that


�L

�u
��

=
�L

�u�
= F�u� �10�

and Q is a nonconservative part of Eq. �9�. If one utilizes an
Ansatz of the form

u = u„b1�t�,b2�t�, . . . ,bN�t�,x… , �11�

then the variational technique which is used in Ref. �27� can
be represented by the following system of equations:

d

dt

��L

��bj�t

−
��L

�bj

= 2 Re �
−





Q
�u�

�bj
dx, j = 1, . . . ,N ,

�12�

where

�L
 = �
−





L�u„b1�t�,b2�t�, . . . ,bN�t�,x…,

u��b1�t�,b2�t�, . . . ,bN�t�,x��dx . �13�

We have applied the extended variational method to the
Eq. �1�, with a control functional of the form �2�. Equation
�1� can be written in the form

iAt + bAxx − c�A�2A = i��1 − K�A��A + Axx + �A�2A	 . �14�

The right-hand side of Eq. �14� is the nonconservative part
Q. The Lagrangian of the left-hand side of Eq. �14� is as
follows:

L =
i

2
�AAt

� − A�At� + b�Ax�2 +
c

2
�A�4. �15�

For studying the dynamics of a one-pulse solution, we use
the Ansatz compatible with the exact pulse solution �5�
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R�x,t� =
C�t�

cosh���t�x�
, ��x,t� = ��t�ln cosh���t�x� + ��t� ,

�16�

with C�t�, ��t�, ��t�, and ��t� playing the role of
b1�t� , . . . ,b4�t�. In this case the control functional can be
written in the form K�A�=−pC. The obtained evolution equa-
tions for C�t�, ��t�, ��t�, and ��t� are as follows:

Ct =
1

9
C�9 − 9pC + 8C2 − ��2 + 6b� + 7��2� ,

�t =
4

9
��C2 − �3b� + 2 − �2��2� ,

�t =
2

3
C2�c − �� +

2

3
�2�2b − ���1 + �2� ,

�t = −
1

9
C2�6 ln 2�� − c� − 4�� − 3c��

+
1

9
�2��6 ln 2 − 4��2b − ���1 + �2� − 7b� − b�2 + 6� .

�17�

According to definitions, C�t� and ��t� are non-negative.
For the investigation of the interaction of two distant

pulselike solutions, we use the Ansatz A=A1+A2, Aj
=Rj exp�i� j�, where

Rj�x,t� =
Cj�t�

cosh�� j�t��x − xj��
,

� j�x,t� = � j�t�ln cosh�� j�t��x − xj�� + � j�t�, j = 1,2

�18�

for each of the solitary waves, which leads to the following
variational model �the overlap of solitary waves is disre-
garded�:

Ċ1 =
1

9
C1�9 − 9p max�C1,C2	 + 8C1

2 − ��1
2 + 6b�1 + 7��1

2� ,

�̇1 =
4

9
�1�C1

2 − �3b�1 + 2 − �1
2��1

2� ,

�̇1 =
2

3
C1

2�c − �1� +
2

3
�1

2�2b − �1��1 + �1
2� ,

Ċ2 =
1

9
C2�9 − 9p max�C1,C2	 + 8C2

2 − ��2
2 + 6b�2 + 7��2

2� ,

�̇2 =
4

9
�2�C2

2 − �3b�2 + 2 − �2
2��2

2� ,

�̇2 =
2

3
C2

2�c − �2� +
2

3
�2

2�2b − �2��1 + �2
2� . �19�

Equations for �̇ j do not influence the dynamics and are not
written here.

B. Model II

We have also used the method of moments developed in
Ref. �29�. This method also represents a reduction of a com-
plete problem to a finite-dimensional dynamical model. For
an arbitrary localized field, integrals of energy, momentum
and higher-order generalized moments are introduced. For a
certain Ansatz these integrals become functions of several
parameters. The number of the higher-order generalized mo-
ments is, in general, infinite, but it is restricted to a finite
number in order to obtain the simplified model. Further, the
algebraic combinations and the integration of the original
equation lead to the derivation of the evolution equations for
the generalized moments, the details see in Ref. �29�, and
references therein.

The application of the method of moments to Eq. �1� pro-
vides a model that is similar in its structure to the variational
model �17� but slightly differs in the constant coefficients.
The obtained evolution equations for C�t�, ��t�, ��t�, and
��t� are as follows:

Ct =
1


2C�
2 − 
2pC + 
2 +
2
2

3
�C2 − �

2

3
− 2��2 + 6b�

+ 4 +

2

3
��2� ,

�t =
4


2��C2 − �3b� + 2 − �2��2� ,

�t =
2

3
C2�c − �� +

2

3
�2�2b − ���1 + �2� ,

�t = −
1

9
C2�6 ln 2�� − c� − 4�
3

2
−

9

2
2�� − 3c��
+

1

9
�2��6 ln 2 − 4��2b − ���1 + �2� − 7b − 
7 −

54


2�b�2

+ 
2 +
36


2�� + 
2 −
18


2��3� . �20�

Note, that if 
2 is replaced by 9, then the system of Eqs. �20�
converts to the model �17�. Furthermore, the stationary
points for models �17� and �20� are the same �details are
presented in the next section�.

In order to further compare both approaches, we have
applied the variational method of Sec. III A to the cubic-
quintic CGLE using one of the Ansätze from Ref. �29�, and
we found that the obtained evolution equations were abso-
lutely identical to those obtained in Ref. �29�. Thus, we con-
clude that both approaches are compatible, and lead to very
close systems, hence there is no need in a special investiga-
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tion of the dynamics described by each of the models. Later
on, we concentrate our attention on the models �17� and �19�
obtained by means of the variational approach.

IV. NONLINEAR DYNAMICS

In the present section, we consider the stability of pulse
solutions �5� and �6� in the framework of the finite-
dimensional dynamical models �17� and �19�, and the dy-
namical regimes caused by their instabilities.

A. Stationary solutions

First, let us consider stationary points of the model �17�
which are obtained by letting Ct=�t=�t=0 and �t=−� �re-
call that C and � are chosen non-negative�. The exact solu-
tion �6� is reproduced. As was mentioned above, for �	1
the two solutions for C exist for p�2�1−� and the linear
growth rate �=1− pC	0. For ��1 there is only one solu-
tion for C and there holds �=1− pC�0. The condition 1
− pC=0 is equivalent to conditions c=−b±3�b2+1 in the
plane of parameters b and c, see Fig. 1. Due to the symmetry
regarding the origin, we can consider only the upper half-
plane of the parameters.

When the model �19� is used, we obtain four kinds of
nontrivial stationary solutions uj = �Cj ,� j ,� j�, j=1,2: �i� C1

�0, C2=0 which leads to a solution u1= �C ,� ,�� , u2

= �0,0 ,�2�, where C ,� ,� are given by Eq. �6� and �2 is
arbitrary; �ii� C1=0 , C2�0 which leads to a solution u1
= �0,0 ,�1� , u2= �C ,� ,��, where C ,� ,� are given by Eq. �6�
and �1 is arbitrary; �iii� u1=u2= �C ,� ,��, where C ,� ,� are
given by Eq. �6�; �iv� on the line �=1 �or pC=1�, two more
families of stationary solutions exist: the first family is u1
= �C ,� ,�� , u2= �C2 ,�2 ,��, where C2 is an arbitrary number
satisfying the condition 0	C2	C and �2=C2 /�1+b� and
the second one is u1= �C1 ,�1 ,�� , u2= �C ,� ,��, 0	C1	C,
and �1=C1 /�1+b�. We shall call solutions of types �i� and
�ii� single-pulse solutions, solutions of type �iii� two-pulse
solutions, and solutions of type �iv� mixed-mode solutions.
Below we consider the stability of stationary solutions.

B. Coexistence and competition of pulses

We start with the consideration of monotonic instabilities
of pulses.

1. Stability of the pulse to the disturbances of its shape

In order to investigate the internal stability of the pulse
solution, we linearized the system �17� around the solution
�6�. The linear growth rate of the perturbed solution � is a
solution of the following characteristic equation:

�3 + a1�2 + a2� + a3 = 0, �21�

where

a1 =
1

9
�C�9p − 16C� + 2�2�2�2 + 9b� + 17�� , �22�

a2 =
2

81
�2�C�9p − 16C��2�2 + 9b� + 17� + 4�2�64 + 18b2

+ 11�2 + 36b2�2 + 69b� + �4 − 3b�3�� ,

a3 =
16

9
�4�1 + b2��2 + �2��2 − pC� . �22�

The monotonic instability boundary �=0 is equivalent to a
condition a3=0, that is, to a condition pC=2. Therefore, it
holds �=1− pC=−1	0, so we are in region I for which the
existence condition is p2�4�1−��, where � is a function of
b and c.

Next, solving the equation pC=2 leads to p2=4�1−��.
Thus, �=0 holds for p2=4�1−�� and this condition corre-
sponds to one solution for C from Eq. �6�. For p2�4�1−��
there exist two solutions for C, C+=1 / �2�1−����p
+�p2−4�1−��� and C−=1 / �2�1−����p−�p2−4�1−���. For
the upper branch of solution C=C+ it holds pC�2 and a3
	0, hence the product of the eigenvalues is positive and
therefore at least one of the eigenvalues � must be positive,
thus the upper branch of C is unstable. For the lower branch
of solution C=C− it holds pC	2 and a3�0 therefore the
product of the eigenvalues is negative and at least one eigen-
value is negative. Thus, the boundary �=0 corresponds to a
transition from one branch of solution to another.

Furthermore, from Eqs. �6� and �17� it follows that

8C2 = 9pC − 9 + �2��2 + 6b� + 7� , �23�

hence

a1 = 2 − pC +
2

9
�2��2 + 3b� + 10� . �24�

From the equation for �, �2�b+c�−3��bc−1�−2�b+c�=0, it
follows that 3b�+2��2�0, therefore a1�0 for pC�2.
However, the coefficient a2 changes its sign for certain val-
ues of b, c, and p, hence there is a possibility for a pulse
solution to be unstable for pC	2.

For example, for b=10, c=20, and p=0.25, one can ob-
tain that a2	0, and the eigenvalues are approximately 16.73,
1.01, and −42.18. Thus, in the framework of the finite-
dimensional model the solution with C=C− is unstable for
abovementioned values of parameters. The direct simulation
of Eq. �1� for the abovementioned values of parameters
shows the blow-up of a pulse solution. With the increasing
value of p we have obtained an oscillatory instability �for

b

c

II

II

I

FIG. 1. The �b ,c� plane. I: the region with 1− pC	0, II: the
region with 1− pC�0. Solid lines: the boundary 1− pC=0.
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example, for p=0.8 eigenvalues are approximately 0.2±1.2i,
−3.2� and then a stability �for example, for p=2 eigenvalues
are approximately −0.4±0.3i, −0.5� of a pulse solution for
b=10 and c=20.

Therefore, one can conclude that the possibility of insta-
bility can be suppressed by demanding some condition on p.
For pC�2 it holds C�2 / p and therefore

a2 �
2

81
�2�C�9p − 32/p��2�2 + 9b� + 17�

�0

+ 4�2

� �64 + 18b2 + 11�2 + 36b2�2 + 69b� + �4 − 3b�3�

�0

� ,

�25�

thus, for p�4�2 /3 it holds a2�0, and the solution C=C− is
stable in the whole region I.

We must mention that a condition p�4�2 /3 is fulfilled
automatically for ��1 /9, because for ��1 /9 it holds that
2�1−��4�2 /3, and p�2�1−� is an existence condition.
For 1 /9	�	1 one can obtain a more precise condition on
p, p�16 /3�9�+7, where 16 /3�9�+7	4�2 /3.

2. Stability of the pulse to the appearance of another pulse

The stability of the solution with regards to the appear-
ance of the second soliton can be studied in the framework of
the model �19�. We linearize the system �19� around the so-
lution �6� for A1 and around a solution �0,0 ,�� for A2. The
linear growth rate of the perturbed solution, �, is a solution
of the following characteristic equation

�2�1 − pC − ����3 + a1�2 + a2� + a3� = 0, �26�

where a1, a2, a3 are given by Eq. �22�. The boundary �=0 is
equivalent to conditions a3=0 or 1− pC=0, that is, to condi-
tions pC=2 or pC=1. The latter condition is equivalent to
conditions c=−b±3�1+b2. Therefore, for 1− pC�0 it holds
�=1− pC�0 and the single-pulse solution is unstable. For
1− pC	0 it holds �=1− pC	0 and the single-pulse solu-
tion is stable for C=C−.

3. Stability of a two-pulse solution

The monotonic stability of a two-pulse solution can be
studied by linearizing the system �19� around the solution �6�
for both A1 and A2 and assuming a certain relation between

the perturbations C̃1 , C̃2, e.g., C̃1� C̃2. Then the character-
istic equation is as follows:

��3 + a1�2 + a2� + a3���3 + â1�2 + â2� + â3� = 0, �27�

where a1, a2, a3 are given by Eq. �22� and

â1 =
2

9
�2�1 − 15b� + 10�2� ,

â2 =
8

81
�4�4��2 − 3b� − 2��2�2 + 9b� + 17� + �64 + 18b2

+ 11�2 + 36b2�2 + 69b� + �4 − 3b�3�� ,

â3 =
32

9
�4�1 + b2��2 + �2��1 − pC� . �28�

The boundary �=0 is equivalent to conditions a3=0 or â3
=0, that is, to conditions pC=2 or pC=1. The latter condi-
tion is equivalent to conditions c=−b±3�1+b2. For 1− pC
	0 it holds â3	0 therefore at least one of the eigenvalues �
is positive. For 1− pC�0 it holds â3�0 and hence �	0.
Thus the two-pulse solution is unstable for 1− pC	0 and
stable for 1− pC�0 and C=C−, and this is opposite to the
stability of the single-pulse solution, at least if we do not
consider the possibility of the oscillatory instability.

4. Stability of mixed-mode solutions

For �=1 it holds pC=1, therefore, the stationary value of
C reduces to C=1 / p. The condition �=1 is equivalent to
conditions c=−b±3�1+b2. For the upper branch c=−b
+3�1+b2, the stationary value of � reduces to �=b
+�1+b2, and for the lower branch, c=−b−3�1+b2, it fol-
lows �=b−�1+b2. It follows also that the stationary value
of � satisfies a condition �2=C2 / �1+b��.

For the investigation of stability of mixed-mode solutions
we linearized the system �19� around the solution �C ,� ,��
for A1 and around �C2 ,�2 ,��, for A2, with C, �, � described
above and �2

2=C2
2 / �1+b��. The obtained characteristic equa-

tion is as follows:

���2 + ã1� + ã2���3 + a1�2 + a2� + a3� = 0, �29�

where

ã1 =
1

9
�2

2�5�2 + 17�, ã2 = −
32

9
�2

4�1 + b2�b� , �30�

and a1, a2, a3 are given by Eq. �22�. For pC=1 it holds a1
�0 and a3�0. Hence, the stability boundary �=0 is equiva-
lent to a condition b=0.

In the case �=1 the condition a2�0 is fulfilled for p2

�32 sgn���b�1+b2 / �13�2+25�. For c=−b+3�1+b2 it
holds that ��0 and therefore a2�0 for all values of p if b
	0. For c=−b−3�1+b2 it holds that �	0 and therefore
a2�0 for all values of p if b�0. Next, the coefficient ã2 is
positive for b	0 on the upper branch and for b�0 on the
lower branch. Thus, the mixed-mode solution is stable for
b	0 on the upper branch of �=1 and for b�0 on the lower
branch, and unstable otherwise.

5. Nonlinear dynamics produced by monotonic instabilities
of a pulse solution

We have performed numerical simulations based on the
variational model �19� for the points depicted on the Fig. 2.
In accordance with the prediction of the linear theory, in
region I, �−b−3�b2+1	c	−b+3�b2+1	, the only stable
state corresponds to a single-pulse solution. This observation
coincides also with that obtained in Ref. �21� by means of
the direct numerical simulations of the original Eq. �1�. An
example of the transient evolution of the dynamical system
�19� for point A1 is shown in Fig. 3�a�. The pulse with higher
amplitude survives and tends to its stationary shape, while
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the pulse with lower amplitude decays. The same dynamics
is observed in points A2 and A3.

In region II, �c	−b−3�b2+1	� �c�−b+3�b2+1	, the
single-soliton solution is unstable with respect to the devel-
opment of the second soliton. However, we observe two
qualitatively different two-soliton regimes. Near the left
boundary of region II �points A4, A5, A6, and A7� the station-
ary two-pulse state is observed, see Fig. 3�b� �for point A4�
and Fig. 4�a� �for point A7�. Near the right boundary of re-
gion II �points A9 and A10� the system tends to an oscillatory
regime with alternating pulses �see Figs. 4�c� and 4�d��. The
boundary between two regimes is the oscillatory instability
boundary of a two-pulse solution �see Fig. 4�b��, which de-
pends on p and can be obtained numerically �see Fig. 5�.

Numerical simulations �Fig. 6� show the supercritical
character of the Hopf bifurcation on the oscillatory instabil-
ity boundary of the two-pulse solution. Phase diagrams for
the oscillating regime for the point A10 shown in Fig. 7 dem-
onstrate a perfect periodicity and symmetry of oscillations.

For the investigation of evolution of behavior of a two-
pulse solution we have fixed arbitrary values of the param-
eters c and p, c=12 and p=5, and looked at the changes of
regimes for the changes of value of b, see Fig. 4. The periods
of the oscillations increase with the approaching to the
boundary of region II, see Fig. 8�a�.

Next, we have performed some calculations for the points
near the right boundary of region II, b�, that are presented in
Table I. The behavior of the solution for small b�−b=� can
be understood in the following way.

Note, that in the whole region II the stationary values
�C ,� ,�� determined by Eq. �6� satisfy the relations

2b 	 � 	 c �31�

and

� − 2b

c − �
=

C2

�2�1 + �2�
. �32�

After the “revolution” when C1�t� becomes larger than C2�t�,
the variables C1�t�, �1�t�, and �1�t� rapidly relax to their
stationary values �C ,� ,�� determined by Eq. �6�, while C2�t�
and �2�t� strongly decrease. The decrease of C2�t� is more
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FIG. 2. Monotonic instability boundary 1− pC=0 in the upper
half of the �b ,c� plane.
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drastic than that of �2�t�, hence C2
2�t� becomes much smaller

than �2
2�t��1+�2

2�t�� �see Fig. 8�e��. According to Eqs. �19�
and �32�, �2 tends to a quasistationary value 2b	� �see Fig.
8�c��. During a long interval of time C2�t� grows nearly ex-
ponentially, with the growth rate � about 1− pC�� �see Fig.
8�a��, while �2�t� continues to decrease �see Fig. 8�d��. Even-
tually, C2

2�t� becomes larger than �2
2�t��1+�2

2�t�� �see Fig.
8�e��, therefore �2 starts to grow tending to c�� �see Fig.
8�c��.

The exponential growth of C2�t� from its minimal value
Cm to the point of “revolution” takes the time T+ which is
determined roughly by the relation Cm exp��T+�=C �of
course, the exponential growth is violated when C2 becomes
of the order of 1, but that stage is relatively short�. Then
C2�t� becomes larger than C1�t��C, thus on this stage
max�C1 ,C2	=C2�t� �see Fig. 8�b��. Because of the enhanced
strength of the feedback control, C1�t� starts to decay and
becomes small. Decay of C1�t� continues, until C2�t�, which
approaches C from above, starts to satisfy the condition 1
− pC2�t��0. The time T− between the “revolution” and the
arriving to the minimum value of C1�t�=Cm is proportional
to 1 /� �see Table I�. Then the process is repeated. The stage
of the exponential growth is the longest one, therefore the
whole period T=2�T−+T+� satisfies the relation T�� ln�Cm�
�see Table I�.

In conclusion to this subsection, let us compare the pre-
dictions of the finite-dimensional model with the results of
the direct numerical simulation of Eq. �1� �21�. The oscilla-
tory regime with alternating pulses corresponds to the regime

of “competing pulses” which is observed in numerics to the
right from the boundary shown in Fig. 5 �point 1�.

As to the regime of coexisting pulses, its basic counterpart
in Ref. �21� is the regime of stationary multiple pulses. How-
ever, the model �19� predicts stationary coexisting pulses
also in the regions where the multiple pulses are not fully
stationary but coalesce from time to time, and the regime of
chaotic pulses, where the multiple pulses are subject to some
chaotic motion �point 2 in Fig. 5�. The latter types of dynam-
ics cannot be obtained in the framework of the model �19�
which ignores the motion of pulses and is unable to describe
the coalescence of pulses. Still, it explains the difference
between multipulse regimes and regimes of competing
pulses where there is only one pulse in the computation re-
gion, except some short transition periods.

C. Multipulse interactions

The generalization of the model to the case of arbitrary
number of interacting pulses is straightforward. In the case of
N pulses, we obtain the following system:

Ċj =
1

9
Cj�9 − 9p max�C1,C2, . . . ,CN	 + 8Cj

2

− �� j
2 + 6b� j + 7�� j

2� ,

�̇ j =
4

9
� j�Cj

2 − �3b� j + 2 − � j
2�� j

2� ,

�̇ j =
2

3
Cj

2�c − � j� +
2

3
� j

2�2b − � j��1 + � j
2�, j = 1, . . . ,N .

�33�

Region I �see Fig. 1� where one-pulse solutions can be ob-
served is unchanged. In the left part of region II �see Fig. 1�
one obtains stable stationary multipulse solutions �in agree-
ment with the results of Ref. �30��; any initial disturbances
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FIG. 6. Stationary and oscillatory regimes for c=12 and p=5.
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decay after some transient process �see Fig. 9�a��. With the
growth of b, these solutions become oscillatory unstable; the
instability leads to the development of time-periodic regimes
characterized by alternation of pulses �see Fig. 9�b��. A fur-
ther growth of b leads to the appearance of more complicated
scenarios of “revolution” where several pulses take part �Fig.
9�d�� and to the development of nonperiodic alternation re-
gimes, that have, however, sufficiently long intervals of pe-
riodic alternation of pulses �Fig. 9�c��. Alternations of sev-
eral pulses with different location have been observed in
direct numerical simulations �21�.

D. Internal oscillations of pulses

1. Applicability of low-dimensional models for the description
of radiating pulses

The possibility of the descriptions of oscillations by
means of a variational approach was a subject of discussion
since the time when it was applied to solitons governed by
the one-dimensional nonlinear Schrödinger equation �26,31�.
Indeed, the variational approach based on the approximation
of the disturbance by a localized trial function of the same
structure as the base soliton solution, predicts internal oscil-
lations with a certain frequency. However, it is well known
that the set of eigenfunctions for the nonlinear Schrödinger
equation linearized around the soliton solution, does not in-
clude localized oscillatory internal modes �32�. The oscilla-
tory eigenfunctions do not decay on the infinity, which

means that an oscillating soliton always radiates. Therefore,
the Ansatz used by the variational approach does not repro-
duce the shape of the eigenfunction sufficiently. The oscilla-
tions of the soliton take form of beating between soliton and
the radiation waves �26�, and its frequency differs from that
predicted by the variational approach �31�.

We can foresee a similar difficulty in the case of pulses
governed by the controlled subcritical Ginzburg-Landau
equation. Though in the case �=1− pC	0 the radiation de-
cays and the oscillatory eigenfunctions are localized, their
shape may be essentially different from that of the base so-
lution, and hence it may be poorly approximated by the An-
satz �16�. Note that the direct computation of the eigenfunc-
tions for the linearized problem �1� carried out for b=c=0,
has shown that the function R�x� for eigenfunctions is a non-
monotonic function of x in each of regions x�0 and x	0
�33�. Therefore, we can expect that unlike the control-
dominated dynamics described in Sec. IV B, which is deter-
mined mainly by the pulse amplitudes and is not sensitive to
the details of the disturbance shape, the computation of in-
trinsic oscillations of solitons by means of the variational
approach can be less precise.

In the present section, we consider internal oscillations of
pulses, both by means of a finite-dimensional model and a
direct numerical simulation. In order to check the predictions
of the variational approach, we perform direct numerical
simulations of pulse oscillations, and compare results of both
approaches.

2. Linear oscillatory instability of a pulse solution

In the framework of model �17�, for �= i� it holds that
a3=a1 ·a2. This boundary is obtained numerically, see Fig.
10.

However, for special values of b and c the oscillatory
instability boundary can be obtained analytically. For ex-
ample, for b=−c it follows that �=0, C2=2�2, and C
= p±�p2−2. The coefficients of the characteristic Eq. �21�
now have a simplified form

a1 =
1

9
�9pC + C2� ,

a2 =
2

9
�2�17pC − 16C2 + 4c2C2� ,

TABLE I. Behavior near the boundary for c=12, p=5; the value of b�=5.87321392113.

4.5 5 5.5 5.8 5.85

� 1.373214 0.873214 0.373214 0.073214 0.023214

T 1298.72 2558.24 7906.8 55443.8 204297.4

ln�Cm� −4.8797 −5.708 −7.13 −9.7803 −11.6249

�T / ln�Cm� −365.48 −391.36 −413.87 −415.04 −407.97

T− 139 217 557 3040 9693

�T− 190.88 189.49 207.88 222.57 225.01
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FIG. 9. Regimes for N=3 and p=5 for points �a� b=0.03, c
=4; �b� b=0.5, c=4; �c� b=0.7, c=4; �d� a “revolution” for b=0.7,
c=4. Black line: C1�t�, gray line: C2�t�, dashed line: C3�t�.
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a3 =
32

9
�4�1 + c2��2 − pC� . �34�

For �= i� it holds a3=a1 ·a2 and therefore

c2 =
21p2C2 + 50pC − 224

8�29p2C2 − 67pC + 38�
. �35�

The minimum is reached in the point p=2.0332 and c
=4.9665. For p→1.6632 it holds that c→
, and for p
	1.6632 it holds that c2	0.

3. Numerical simulation

In order to investigate the oscillatory behavior of pulse
solutions, a computer test of the finite-dimensional model
�19� was provided in points denoted in Fig. 10. The follow-
ing possible regimes were obtained: �i� oscillations of a
single-pulse solution �points B1 and B2�, see Fig. 11; �ii�
oscillations on the background of alternating pulses �point

B3�, see Fig. 12�a�; and �iii� oscillations of a two-pulse solu-
tion �point B4�, see Fig. 12�b�.

Next, a direct numerical simulation of Eq. �1�, with the
periodic boundary conditions, was held in order to obtain the
same oscillatory regimes. We have not managed to obtain the
regime of alternating oscillating pulses and the regime of a
two-pulse oscillating solution. Oscillations of a one-pulse so-
lution were obtained in the point B2 �see Fig. 13�a�� for a
certain length of the x-axis segment. However, the increase
of the segment’s length can lead to the disappearance of os-
cillations of a one-pulse solution. Therefore, we can con-
clude that the internal oscillations of pulses are observed
only in a finite region.

The form of one-pulse solution is presented in Fig. 13�b�.
One can see that in addition to the pulse, the solution con-
tains small-amplitude waves �“radiation”� which persist due
to periodic boundary conditions. Hence, the assumptions
used by the construction of the finite-dimensional model, are
poorly satisfied.
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V. CONCLUSIONS

Dynamics of subcritical oscillations under the action of a
global feedback control has been considered. We have con-
structed a finite-dimensional model for the description of the
indirect interaction of pulses stabilized by the active control.

In the framework of the model, we have explained and
analyzed the transition from the stationary multipulse regime
to the regime of alternating pulses. At the same time, the
internal oscillations of pulses, which essentially depend on
the interaction between the pulses and radiated waves, can-

not be adequately described in the framework of the low-
dimensional model.
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